Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Adv Pharm Bull ; 13(1): 150-159, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2293957

ABSTRACT

Purpose: The emergence of the COVID-19 pandemic has led to the search for potential therapeutic responses for various aspects of this disease. Fruits of Pterodon emarginatus Vogel (Fabaceae), sucupira, have been used in Brazilian traditional medicine because of their anti-inflammatory properties, which have been proven in vivo, in vitro, and in silico. Therefore, the aim of this work is to evaluate P. emarginatus oleoresin and isolated diterpenes by in vitro anti-inflammatory models. Methods: In this study, the mechanisms underlying the anti-inflammatory activity of P. emarginatus oleoresin and vouacapanes 6α,19ß-diacetoxy-7ß,14ß-dihydroxyvouacapan (V1), 6α-acetoxy-7ß,14ß-dihydroxyvouacapan (V2), and methyl 6α-acetoxy-7ß-hydroxyvouacapan-17ß-oate (V3) were investigated in HaCaT cells. Results: Oleoresin, V2, and V3 inhibited phospholipase A2 (30.78%, 24.96%, and 77.64%, respectively). Both vouacapanes also inhibited the expression of COX-2 (28.3% and 33.17%, respectively). The production of interleukin 6 (IL-6) was inhibited by oleoresin by 35.47%. However, oleoresin did not interfere with Nrf-2 expression or IL-8 production. Conclusion: The results support the ethnomedicinal use of P. emarginatus oleoresin as an anti-inflammatory herbal medicine, and also highlight P. emarginatus oleoresin and isolated vouacapanes as an attractive therapeutic approach for COVID-19 through the reduction or chronological control of the inflammatory mediators IL-6, cyclooxygenase-2 (COX-2), phospholipase A2, and INF-y (indirectly) during the SARS-CoV-2 infection process.

2.
Electrochem ; 3(3):538-548, 2022.
Article in English | MDPI | ID: covidwho-2009994

ABSTRACT

Electrochemical immunosensors are often described as innovative strategies to tackle urgent epidemiological needs, such as the detection of SARS-CoV-2 main biomarker, the spike glycoprotein. Nevertheless, there is a great variety of receptors, especially recombinant antibodies, that can be used to develop these biosensing platforms, and very few reports compare their suitability in analytical device design and their sensing performances. Therefore, this short report targeted a brief and straightforward investigation of the performance of different impedimetric biorecognition surfaces (BioS) for SARS-CoV-2, which were crafted from three commonly reported recombinant antibodies and molecularly-imprinted polymer (MIP) nanoparticles (nanoMIP). The selected NanoMIP were chosen due to their reported selectivity to the receptor binding domain (RBD) of SARS-CoV-2 spike glycoprotein. Results showed that the surface modification protocol based on MUDA and crosslinking with EDC/NHS was successful for the anchoring of each tested receptor, as the semicircle diameter of the Nyquist plots of EIS increased upon each modification, which suggests the increase of Rct due to the binding of dielectric materials on the conductive surface. Furthermore, the type of monoclonal antibody used to craft the BioS and the artificial receptors led to very distinct responses, being the RBD5305 and the NanoMIP-based BioS the ones that showcased the highest increment of signal in the conditions herein reported, which suggests their adequacy in the development of impedimetric immunosensors for SARS-CoV-2 spike glycoprotein.

SELECTION OF CITATIONS
SEARCH DETAIL